If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x-4=0
a = 10; b = 8; c = -4;
Δ = b2-4ac
Δ = 82-4·10·(-4)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{14}}{2*10}=\frac{-8-4\sqrt{14}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{14}}{2*10}=\frac{-8+4\sqrt{14}}{20} $
| 3(2x+7)=3(3x-7)+2x | | y=1.y-9= | | 24x+18-4x=21x-12 | | y=8.y+4= | | y=6.2-y= | | y=6.2-y | | y=2/2(2*1+(2-1)3) | | 2^(z-1)=8 | | 2x+13=34–x | | 1/2x+1=2/3-2 | | 2q=6,q= | | x^2-3(x+1)=-3 | | 19x=16x | | 19x-16x=0 | | 3(x+7)(x+7)=0 | | 5x²-90x+405=0 | | 2x(2x-1)=2 | | 6k^2-4k+3=0 | | 13x-11+30x-4+8x-9=90 | | 2+3(x+1)=11 | | 9-8x=-5-6x | | 13x-11+30x-4+8x-9=180 | | 4x+2=2x+6x | | 3k^2-12k=36 | | 4(x+3)/2-5=10 | | 2(3x+2)=9+x | | 2(5)^2r+5^r-1=0 | | 9x-11+11=106+11 | | 4(2x+8)-10=14 | | (30/4x+2)=(42/5x-2) | | -4|x+7|=-56 | | 6x-35=5x-20 |